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Abstract

An analytical investigation on the effect of high

aspect ratio (height/width) cooling channels in a liquid

hydrogen cooled rocket combustion chamber was per-
formed. Different coolant channel designs were evaluated

for their effect on hot-gas-side wall temperature and

coolant pressure drop. Coolant channel design elements
considered were length of combustion chamber in which

high aspect ratio cooling was applied, number of coolant
channels, and coolant channel shape. Seven coolant

channel designs were investigated using a coupling of
the Rocket Thermal Evaluation code and the Two-

Dimensional Kinetics code. Initially, each coolant chan-

nel design was developed, without consideration for
fabrication, to reduce the hot-gas-side wall temperature

from a given conventional cooling channel baseline. These

designs produced hot-gas-side wall temperature reduc-

tions up to 22 percent, with coolant pressure drop
increases as low as 7.5 percent from the baseline. Fabrica-

tion constraints for milled channels were applied to the

seven designs. These produced hot-gas-side wall temp-
erature reductions of up to 20 percent, with coolant pres-

sure drop increases as low as 2 percent. Using high aspect

ratio cooling channels for the entire length of the combus-
tion chamber had no additional benefit on hot-gas-side

wall temperature over using high aspect ratio cooling

channels only in the throat region, but increased coolant

pressure drop 33 percent. Independent of coolant channel

shape, high aspect ratio cooling was able to reduce the hot-

gas-side wall temperature by at least 8 percent, with as low

as a 2 percent increase in coolant pressure drop. The

design with the highest overall benefit to hot-gas-side wall

temperature and minimal coolant pressure drop increase

was the design which used bifurcated cooling channels

and high aspect ratio cooling in the throat region.

Introduction

Among the many engineering challenges of reusable

rocket engines is the need for chamber liners which will

withstand the harsh combustion environment for many

thermal cycles before failure. This is generally accom-

plished with a regenerative cooling system. In order to
maintain chamber life, the cooling must keep the hot-gas-

side wall temperature (Tgw) well below the material's
melting limit. One solution to this problem is the use of

high aspect ratio (height/width) cooling channels

(_CC).

Subscale and validation experiments at NASA Lewis

Research Center have shown HARCC to significantly

reduce the Tg w for the same pressure drop or with a modest
pressure drop increase. 1'2 These tests also showed that
HARCC and a decreased coolant mass flow rate could

reduce the coolant pres sure drop and still achieve a modest

reduction in the Tg w. These experiments were conducted
with bifurcated coolant channels, which had a high aspect

ratio in the throat region.

HARCC has been experimentally investigated, but

past analytical study has been limited. Previously, com-

puter capabilities limited analytical study due to the need

for super computing capability and large computing times.

Advances in computer technology now make codes able
to run in much shorter times using workstations. Investi-

gation into the appropriate way to apply high aspect ratio

cooling can now be done in relatively short periods of time

with multiple iterations.

This study investigated the affect of HARCC, consid-

ering different coolant channel designs, on Tg w and cool-
ant channel pressure drop for a liquid hydrogen (LH 2)

"Copyright ©by the AmericanInstitute ofAeronautics andAstronautics,
Inc. No copyright is asserted in the United States under Title 17, U.S.
Code. The U.S. Government has a royalty-free license to exercise all
rights under the copyright claimed herein for Governmental Purposes.
All other rightsare reserved by the copyright owner."
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cooledrocketcombustionchamber.TheLH2coolant
massflowratewasheldconstantfor theentirestudy.
Sevencoolantchanneldesignsweredevelopedwhich
variedtheelementsof; thechamberlengthin which
HARCCwasapplied,thenumberofcoolantchannels,and
coolantchannelshape.Forthisstudy,eachoftheseven
coolantchanneldesignswasinitiallydeveloped,without
considerationforfabrication,toreducethemaximumTgw
to 667K (1200°R)fromagivenconventionalcooling
channelbaselinetemperatureprofilewithamaximum
Tgwof778K (1400°R).Afterthesedesignsweredeter-
mined,thesevencoolantchanneldesignsweremodified
toreflectcurrentfabricationtechniques.Thesevendesigns
werethenevaluatedtoobtainanoveralldesign,whichhad
themostbenefittoTgwwithoutsignificantadverseimpact
oncoolantpressuredrop.

Combustion Chamber Design

In order to make acomparison of the different HARCC

designs, the thrust chamber contour selected, shown in

Fig. 1, was the one used for the previous HARCC valida-
tion experiments. 2,3 This contour was based on a 89 kN

(20 000 lbf) thrust chamber previously tested at NASA
Lewis Research Center for thermal fatigue and validation

studies. The combustion chamber used an oxygen free

electrical (OFE) copper inner liner with a nickel closeout

structural jacket. The injector had 91 liquid oxygen (LOX)

posts, and all fuel flowed through a porous-sintered-wire

mesh face plate.

The combustion chamber pressure used was 11 MPa

(1600 psia) with a mixture ratio (oxygen/fuel) of 6.0. A

rocket combustion analysis code (ROCCID) was used to

obtain an axial profile of the mixture ratio in the combus-
tion chamber upstream of the throat. 4 LOX and gaseous

hydrogen (GH2) were used as propellants, with LtLa as the
coolant. The LOX mass flow rate used was 13.8 kg/sec

(30.4 lbm/sec ), and the GH 2 and LH 2 mass flow rates used

were 2.3 kg/sec (5.1 lbm/sec ) each. The propellant and

coolant inlet temperatures were assumed to be 91.7 K

(165 °R) for LOX, 300 K (540 °R) for GH 2, and 44.4 K

(80.0 °R) for LH 2. For this study, the LH 2 coolant mass
flow rate was held constant.

Coolant Channel Design

Conventional Baseline Channel Design

In order to design the HARCC chambers to reduce

Tgw, abaseline design with conventional coolant channels
was used. This baseline design uses 100 coolant channels

at a conventional aspect ratio of 2.5. It has the same cham-
ber contour and conditions as assumed for the HARCC

designs. In an effort to make a comparison with the base-

line, the total coolant channel area at a given axial location

of the combustion chamber was kept the same between the

baseline and the different designs.

Coolant Channel Designs
The three coolant channel design criteria considered

were; the length of chamberin which HARCC was applied,
the number of coolant channels, and coolant channel

shape. Table I presents the seven different design combi-

nations investigated.

TABLE I.--MATRIX OF BASIC COOLANT CHANNEL

DESIGNS

Channel Number of coolant channels Design

shape number
Chamber Throat Nozzle

region region region
Continuous 1

2_ . 2_ 2

..... 166 ':"'!' ......... 100 ........ 3
200 200 4

Bifurcated 100 :200 100 5

Stepped 100 100 6

200 200 7

aShaded regions indicate areas of HARCC.
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Figure 1.--Combustion chamber contour with RTE and TDK computer analysis points indicated.
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Figure 2.--Schematics of different coolant channel shapes evaluated.

Coolant Channel Shape
The different coolant channel shapes considered were

continuous, bifurcated, and stepped. Schematics for the

different shapes are shown in Fig. 2. All of the coolant
channels were rectangular. Continuous channels were
channels which had smooth transitions in width. Bifur-

cated channels were channels which were split into two

channels and combined back to a single channel. Stepped

channels were channels which made a sharp geometry

change to another width.

Computer Codes

The designs were evaluated for their Tgw and coolant
pressure drop using an iterative coupling between two

different computer codes. The codes were a three dimen-
sional rocket thermal evaluation code (RTE) and a nozzle

analysis code, TDK, which uses an inviscid boundary

layer analysis technique. 5'6 RTE and TDK were coupled

by iterating between heat transfer rate and Tg w.

This method of predicting the Tg w and coolant chan-
nel pressure drop has been compared against experimental
results obtained during HARCC validation tests. 2 The

method was able to predict experimental coolant rib

thermocouple temperatures within an average of 9 percent

and experimental coolant pressure drops within an aver-

age of 25 percent. Although the coolant pressure drop pre- "_
dictions were not as accurate as the temperature predictions,

O.

the RTE code was run assuming smooth channels. How- E
ever, the actual combustion chamber channels did not have

perfectly smooth channels in the bifurcation regions, and
possible burrs existed in the coolant entry and exit mani- -o
folds, after welding. Each of these were localized to part- "_
icular channels or nonuniform in a circumferential region t_

of the chamber. These manufacturing consequences could

account for the discrepancy in the code predictions and -r

data, and are very difficult to predict and model due to the

nonuniformity. For this study, smooth coolant channels

were assumed in order to make a comparison between

each coolant channel design. Although the assumption of

smooth coolant channels would not give the most accurate

assessment of coolant pressure drop, it would eliminate

error for assumptions in localized manufacturing

consequences.

Coolant Channel Design Method

The coolant channel design method used RTE and

TDK coupled to evaluate Tg w and coolant pressure drop.

Using the Tg w and coolant pressure drop, a coolant chan-

nel design was formulated which would reduce the Tgw in
the hot throat region from the baseline. Figure 3 shows a

schematic of a conventionally cooled Tg w profile and a

target Tg w profile using HARCC. A reduction of the Tg w
in the throat region from 778 K (1400 °R) to below 667 K

(1200 °R) was used as the target HARCC profile. The Tg w
limit of 667 K (1200 °R) was chosen based upon an experi-

mental study of the fatigue life of OFE copper thrust

chambers.7 This study showed that a reduction of the Tg w
from 778 K (1400 °R) to 667 K (1200 °R) could more than

double the number of thermal cycles before failure. The

axial locations evaluated along the combustion chamber

contour are indicated in Fig. 1. The flow chart given in

Fig. 4 represents the method used to develop the coolant

800
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400

300

200

100

0
-25

-- 778

667

Baseline
..... Desired HARCC

I I I I I I
-20 -15 -10 -5 0 5

Chamber length, cm

Figure 3.--Schematic of desired hot-gas-side wall
temperature using high aspect rat o cooling.
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Combustion inputs: /

Chamber pressure,
Coolant temperature,

Mass flow rates,
Coolant inlet pressure

RocketThermal
Evaluation code

(RTE)

I

Output:

Coolant Ap, Tgw,
Coolant exit pressure

1No

Stop

Geometry inputs: /

Chamber contour //
Number of channels, //

Channel widths, /_
Channel heights, /

Channel aspect ratios /

I

Two-Dimensional
Kinetics nozzle

performance code
(TDK)

/
Yes - Increase coolant inlet pressure

No - Change channel geometry

Figure 4.--Flow chart of computer design and analysis method.

channel designs to obtain Tg w profiles for each design
which would most closely match the target HARCC profile

shown in Fig. 3.

As shown in Fig. 4, the coolant inlet pressure was

increased until the coolant exit pressure was above the

chamber pressure. This was done to simulate the positive

pressure differential needed during actual combustion in
order to prevent back flow into the coolant channels in the

case of a failure. Once the coolant pressure was corrected,

the coolant channel geometry was modified based upon

the resultant Tg w.

Fabrication Criteria

When fabrication was taken into consideration, it was

limited to current milling capabilities. The most important
of these are:

• Aspect ratios <8

• Coolant channel heights <0.51 cm (0.20 in.)

• Coolant channel widths >0.051 cm (0.02 in.)

• Coolant channel landwidths >0.051 cm (0.02 in.)

• No sharp changes in coolant channel width or

height (except the width changes for the stepped

channel design)
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Figure 5._Schematic of bifurcation fabrication.

The bifurcated channels had an additional fabrication

consideration. With current milling techniques, it is very

difficult to perfectly bifurcate a channel. Usually there is

a transition section created during milling. This transition

is depicted in Fig. 5. The result is an exaggerated increase

in flow area of the single coolant channel, which reduces

the heat transfer capabilities at that point, and can lead to

a local increase in Tg w. This transition was taken into

account for the bifurcated channel design. The total cool-

ant flow area for each axial location at these bifurcation

transition points was greater than the baseline design. This

allowed for a more accurate assessment of the affect the

transition area had on the Tg w for the bifurcation design•

Results and Discussion

Using the design and analysis methodology described,

the final coolant channel designs, corresponding TgwS and

coolant channel pressure drops were determined and

compared. Each design given in Table I was evaluated

with and without consideration for fabrication.

Coolant Channel Designs Without Consideration for

Fabrication

The coolant channel designs were first determined

without consideration for fabrication. TgwS and coolant

channel pressure drops were determined with the resultant

geometries.

Each design attempted to reproduce the target HARCC

Tg w profile given in Fig. 3, Figures 6 to 12 show each
• , • " A

design s actual T_ w compared with the basehne Tg w. s

shown in Figs. 6 t_) 12, each design resulted in TgwS below

the limit of 667 K (1200 °R), with a temperature profile

similar to the profile given in Fig. 3. Table II shows the

highest Tg w and the coolant pressure drop for each of the

designs, without considering fabrication. As shown in

Table II, Tg w reductions from 16.5 to 22 percent were
obtained. Figs. 7, 9, and 12, which correspond to designs

2, 4, and 7, show the entire Tg w profiles well below the

baseline due to the use of 200 cooling channels throughout

the entire chamber region. Figures 11 and 12, which
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Figure 6.mHot-gas-side wall temperature comparison
of Design 1 and baseline, without consideration for
fabrication.
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Figure 7.--Hot-gas-side wall temperature comparison

of Design 2 and baseline, without consideration for
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Figure 8.mHot-gas-side wall temperature comparison
of Design 3 and baseline, without consideration for
fabrication.
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Figure 10.--Hot-gas-side wall temperature comparison
of Design 5 and baseline, without consideration for
fabrication.
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Figure 9.--Hot-gas-side wall temperature comparison
of Design 4 and baseline, without consideration for
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Figure 12.--Hot-gas-side wall temperature comparison
of Design 7 and baseline, without consideration for
fabrication.

TABLE II.---COMPARISON OF MAXIMUM PREDICTED

HOT-GAS-WALL TEMPERATURES AND TOTAL

COOLANT CHANNEL PRESSURE DROPS

Design Without consideration
number for fabrication

Tg. AP
K (°R) MPa (psi)!

Baseline 764 (1376) 3.7 (540)

1 638 (1149) 4.6 (670)

2 599 (1079) 5.0 (720)

3 637 (1146) 4.3 (630)

4 610 (1098) 4.6 (660)

5 618 (1112) 4.0 (580)

6 636 (1144) 4.4 (640)

7 601 (1082) 4.7 (680)

Considering fabrication !

Tg_ AP
K (°R) MPa (psi)

764 (1376) 3.7 (540)

698 (1257) 4.1 (600)

608 (1094) 5.0 (720)

701 (1262) 3.9 (570)

609 (1096) 4.8 (690)

613 (1103) 4.07 (590)

702 (1264) 3.8 (550)

614 (1106) 4.6 (670)

correspond to designs 6 and 7, do not have a smooth

reduced Tg w, but rather show fluctuations in the tempera-
ture profile. This is due to the abrupt changes in the coolant

channel width based upon the stepped coolant channel

design configuration.

Coolant channel pressure drops were also calculated

for each design. Each of the designs resulted in a higher

coolant pressure drop than the baseline. These pressure

drop increases ranged from 7.5 to 33 percent. As expected,

the highest coolant pressure drop came from design 2.
This was due to using high aspect ratio cooling throughout

the entire chamber, and using 200 cooling channels for the

entire length of the chamber. The lowest coolant pressure

drop increase (7.5 percent), came from design 5, which
used bifurcated coolant channels.

All of the designs were able to produce Tg w profiles
similar to the profile shown in Fig. 3. Table III shows the

significant geometry requirements to obtain the reduced

TgwS shown in Figs. 6 to 12. As shown in Table HI, designs
1, 3, and 6 have extremely high aspect ratio requirements

of 40, channel heights up to 1.02 cm (0.400 in.), and

channel widths of 0.025 cm (0.010 in.). Designs 2, 4, 5,

and 7 have geometry requirements that are not as extreme

as designs 1, 3, and 6, and are closer to fabrication

capabilities.

Once the coolant channel designs were determined,

the seven designs were compared. The use of HARCC

throughout the entire chamber length, designs 1 and 2,

produced Tg w profiles similar to the other designs. How-
ever, the coolant pressure drops incurred were 24 and

33 percent, respectively. The use of 200 channels through
out the entire chamber, designs 2, 4, and 7, produced the

highest benefit to the Tg w with reductions of 20 to
22 percent, but incurred coolant pressure drops of 22 to

33 percent. All of the HARCC designs produced a reduc-

tion in Tg w of at least 16.5 percent, with coolant channel
pressure drop increases as low as 7.5 percent. Based upon

the Tg w and coolant channel pressure drop, design 5
resulted in the highest overall benefit. Although design 5

does not have the 22 percent reduction in Tg w as design 2,

TABLE m.--GEOMETRY COMPARISONS OF DESIGNS WITHOUT

CONSIDERATION FOR FABRICATION

Design
number

Highest Maximum channel Minimum channel Minimum

aspect ratio height, width, landwidth,

cm (in) cm (in) cm (in)

40.0 1.02 (0.400) 0.025 (0.010) 0.183 (0.072)

6.2 0.318 (0.125) 0.046 (0.018) 0.056 (0.022)

40.0 1.02 (0.400) 0.025 (0.010) 0.165 (0.065)

5.0 0.254 (0.100) 0.051 (0.020) 0.043 (0.017)

8.9 0.587 (0.231) 0.051 (0.020) 0.043 (0.017)

40.0 0.025 (0.010) 0.135 (0.053)

6.2

1.02 (0.400)

0.292 (0.115) 0.046 (o.o18) 0.043 (0.017)
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it does have a 19 percent Tg w reduction and the lowest
coolant pressure drop increase of 7.5 percent.

Coolant Channel Designs Considering Fabrication

After the coolant channel designs had been deter-

mined to achieve the Tg w profile shown in Fig. 3,

the designs were modified for fabrication. TgwS and
coolant channel pressure drops for each design were then
determined.

Each design was evaluated to obtain its Tg w profile
based upon fabrication constraints. Figures 13 to 19 show

each design' s Tg w compared with the baseline T. w and the
Tg w achieved without considering fabrication. F_lgnres 13,
15, and 18, which correspond to designs 1, 3, and 6, show

Tg w profiles with only modest decreases in temperature
once fabrication was taken into consideration. Table II

shows the highest Tg w and coolant pressure drop for each
of the designs after considering fabrication. As shown in

Table II, designs 1, 3, and 6 have temperature reductions

of 8 percent. Figures 14, 16, and 19, which correspond

to designs 2, 4, and 7, show minimal change in the TgwS
once fabrication was considered. These designs retained

the 20 percent reduction in Tg w, as shown in Table II.
Design 5 resulted in the most dramatic change in Tg w
profile (see Fig. 17) once fabrication was considered. As

expected, sharp temperature increases in the bifurcation
transition areas did occur. However, the area of 200

channels was extended well into the combustion chamber to

place the bifurcation point beyond the critical heat transfer

area and reduce the temperature peaks. This resulted in

some over cooling of the chamber upstream of the throat.

Coolant channel pressure drops were calculated for

each design. Each of the designs resulted in a higher

coolant pressure drop than the baseline. These pressure

drop increases ranged from 2 to 33 percent. Again, the

highest coolant pressure drop came from design 2. The

lowest coolant pressure drop increase (2 percent), came

from design 6, which used 100 stepped coolant channels.

The coolant pressure drops were lower, once fabrication

was considered, for designs 1,3, and 6, due to limiting the

coolant channel height to 0.51 cm (0.20 in.) for fabrication.

Imposing fabrication constraints on the seven designs

impacted the coolant channel geometries as well as the

Tg w and coolant pressure drops. However, it was still pos-
sible to meet the target Tg w with an acceptable coolant
pressure drop. The fabrication constraints greatly modi-

fied designs 1, 3, and 6. This was due to the reduction in

their highest aspect ratio from 40 down to the limit of 8.

This raised the maximum Tg w for designs 1, 3, and 6
above the limit of 667 K (1200 °R) (see Table III). How-

ever, lowering the aspect ratio of these designs greatly
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Figure 13.mHot-gas-side wall temperature comparison
of Design 1 and baseline, with and without consid-
eration for fabrication.
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Figure 15.mHot-gas-side wall temperature comparison
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eration for fabrication.
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Figure 17.--Hot-gas-side wall temperature comparison
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eration for fabrication.
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eration for fabrication.
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of Design 7 and baseline, with and without consid-
eration for fabrication.

reduced their coolant pressure drops. Designs 2, 4, and 7

did not have a significant change once fabrication was

considered, since their geometries were close to the fabri-

cation constraints initially (see Table II). The Tgw profiles
for designs 2, 4, and 7 did vary with consideration for
fabrication, but did not go above the limit of 667 K

(1200 °R). Likewise, the coolant pressure drops for these

designs did not vary greatly. Design 5 did have significant

geometry changes with consideration for fabrication,

although it was already close to the fabrication limits. This
was due to the inclusion of the transition area in the

bifurcation regions and the need to eliminate the Tg w
spikes in these regions. Although design 5' s geometry made

a dramatic change, the maximum Tg w was below the
667 K (1200 °R) limit, and the coolant pressure drop
remained about the same. The fabrication constraints

imposed did limit some of the designs in meeting the Tg w
target, however, a design was possible which was able to

reduce the Tg w below the 667 K (1200 °R) limit without
a severe coolant pressure drop penalty.

Once fabrication was taken into consideration, the

seven designs were compared again. As in the case with-
out consideration for fabrication, the use of HARCC

throughout the entire chamber length, designs 1 and 2,

produced similar Tg w profiles to those that used HARCC
only in the throat region. Designs 1 and 2 also continued

to have higher pressure drop increases, 11 and 33 percent

respectively. Therefore, using HARCC throughout the

entire chamber length does not have significant advantage

over using HARCC in the throat region, but does have a

significant adverse impact on coolant pressure drop. The
use of 200 channels throughout the entire chamber length,

designs 2, 4, and 7, again produced the highest benefit to

the Tg w, after fabrication was considered, with reductions
of 19.5 to 20 percent, but still incurred coolant pressure

drop increases of 24 to 33 percent. This shows that using

200 channels for the entire chamber length could signifi-

cantly benefit the Tg w profile, but would have a high
coolant pressure drop penalty. All of the HARCC designs,

once fabrication was accounted for, produced reductions

in Tg w of at least 8 percent, with as little as a 2 percent
increase in coolant pressure drop (design 6, in Table II).

This shows that the use of HARCC benefits the T_ w
independent of channel shape. Based upon the T_ w profi_le
and coolant pressure drop, design 5 was again t_e design

which would result in the highest overall benefit. It had a

20 percent reduction in Tg w and a 9 percent increase in
coolant pressure drop.

Bifurcated coolant channels have always been used

for the experimental investigations of HARCC at NASA
Lewis Research Center. This was based on the enhanced

fin effect of having multiple, thin fins in the bifurcated

region to enhance cooling. It was assumed that the coolant

pressure drop took a penalty for the increased number of
channels, but that the enhanced cooling outweighed the

penalty. This study shows that the use of bifurcated high

aspect ratio coolant channels does enhance the cooling
due to the increased number of coolant channels in the

bifurcated region, but does not greatly increase the coolant

pressure drop over a chamber which does not bifurcate the

channels. Bifurcating channels does pose some manufac-

turing issues, such as the transition areas. These result in

the temperature spikes and some over cooling, as seen in

Fig. 17. However, if a coolant channel design was attempted

without constraining the total coolant flow area to match
a baseline, these issues could be minimized and the
benefits of HARCC and bifurcated channels still obtained.

Therefore, use of bifurcated coolant channels is recom-

mended if a reduction in Tg w is desired, and a minimal
increase in coolant pressure drop can be tolerated.

Concluding Remarks

The effect of high aspect ratio (height/width) cooling

channels (HARCC) on hot-gas-side wall temperature (Tgw)
and coolant pressure drop was analytically investigated,

considering length of the HARCC, number of coolant

channels, and coolant channel shape. The RTE and TDK

codes were coupled to determine the Tg w and coolant
pressure drop. First, the HARCC designs were determined

without consideration for fabrication and produced
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Tg w reductions of 16.5 to 22 percent from the given
baseline, with 7.5 to 33 percent increases in coolant

pressure drop. The HARCC designs were then modified

to reflect current milling fabrication techniques and limi-

tations. The designs produced Tg w reductions of 8 to 20
percent from the given baseline, with 2 to 33 percent

increases in coolant pressure drop. The fabrication con-

straints imposed did limit some of the designs in meeting

the Tg w target, however, a design was possible which was
able to reduce the Tg w below the 667 K (1200 °R) limit
without a severe coolant pressure drop penalty. Using

HARCC for the entire chamber length was shown to have

no significant Tg w advantage over using HARCC only in
the throat region, but did significantly increase the coolant

pressure drop. Using 200 coolant channels for the entire

chamber length was shown to benefit the Tg w profile, but
would have a high coolant pressure drop penalty. All of the

HARCC designs, once fabrication was considered, pro-

duced reductions in Tg w of at least 8 percent, with as little
as a 2 percent increase in coolant pres sure drop. Therefore,
the use of HARCC was shown to have an overall benefit,

independent of coolant channel shape. The HARCC design
which used bifurcated coolant channels had the most

overall benefit with Tg w (20 percent reduction) and cool-
ant pressure drop (9 percent increase). This study showed

that using bifurcated high aspect ratio channels gave

enhanced cooling in the throat region due to the use of

multiple coolant channels, but did not greatly increase the

coolant pressure drop over a chamber which did not
bifurcate the channels.
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